Lagged couplings diagnose Markov chain Monte Carlo phylogenetic inference

نویسندگان

چکیده

Phylogenetic inference is an intractable statistical problem on a complex space. Markov chain Monte Carlo methods are the primary tool for Bayesian phylogenetic inference, but it challenging to construct efficient schemes explore associated posterior distribution or assess their performance. Existing approaches unable diagnose mixing convergence of jointly across all components model. Lagged couplings algorithms have recently been developed simpler spaces and unbiased estimators. We describe contractive coupling chains targeting over space trees with branch lengths, scalar parameters latent variables. use these model up 200 leaves. Samples from our coupled may also be used

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian phylogenetic inference via Markov chain Monte Carlo methods.

We derive a Markov chain to sample from the posterior distribution for a phylogenetic tree given sequence information from the corresponding set of organisms, a stochastic model for these data, and a prior distribution on the space of trees. A transformation of the tree into a canonical cophenetic matrix form suggests a simple and effective proposal distribution for selecting candidate trees cl...

متن کامل

Markov chain Monte Carlo for Bayesian inference

The chord length transform (CLT) is a useful tool to analyze fibre structures. Assuming e.g. arandom process of straight fibres then a realization of such a process can be observed in a binaryimage. The CLT maps to each point in the foreground of a binary image and to each direction thelength of the related chord, where the chord is the connecting part of a line in the direction...

متن کامل

Bayesian Phylogenetic Model Selection Using Reversible Jump Markov Chain Monte Carlo R.H. Substitution model selection Key words: Bayesian phylogenetic inference, Markov chain Monte Carlo, maximum likelihood, reversible jump Markov chain Monte Carlo, substitution models

A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion ...

متن کامل

Markov Chain Monte Carlo

Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Statistics

سال: 2023

ISSN: ['1941-7330', '1932-6157']

DOI: https://doi.org/10.1214/22-aoas1676